Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nano Today ; 47: 101669, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095846

ABSTRACT

Global public health infrastructure is unprepared for emerging pathogen epidemics, in part because diagnostic tests are not developed in advance. The recent Zika, Ebola, and SARS-CoV-2 virus epidemics are cases in point. We demonstrate here that multicolored gold nanoparticles, when coupled to cross-reactive monoclonal antibody pairs generated from a single immunization regimen, can be used to create multiple diagnostics that specifically detect and distinguish related viruses. The multiplex approach for specific detection centers on immunochromatography with pairs of antibody-conjugated red and blue gold nanoparticles, coupled with clustering algorithms to detect and distinguish related pathogens. Cross-reactive antibodies were used to develop rapid tests for i) Dengue virus serotypes 1-4, ii) Zika virus, iii) Ebola and Marburg viruses, and iv) SARS-CoV and SARS-CoV-2 viruses. Multiplexed rapid antigen tests based on multicolored nanoparticles and cross-reactive antibodies and can be developed prospectively at low cost to improve preparedness for epidemic outbreaks.

2.
PLoS Negl Trop Dis ; 16(3): e0010311, 2022 03.
Article in English | MEDLINE | ID: covidwho-1770641

ABSTRACT

BACKGROUND: The focus on laboratory-based diagnosis of coronavirus disease 2019 (COVID-19) warrants alternative public health tools such as rapid antigen tests. While there are a number of commercially available antigen tests to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), all cross-react with the genetically similar SARS-CoV-1 or require an instrument for results interpretation. METHODOLOGY/PRINCIPAL FINDINGS: We developed and validated rapid antigen tests that use pairs of murine-derived monoclonal antibodies (mAbs), along with gold nanoparticles, to detect SARS-CoV-2 with or without cross-reaction to SARS-CoV-1 and other coronaviruses. In this development, we demonstrate a robust antibody screening methodology for the selection of mAb pairs that can recognize SARS-CoV-2 spike (S) and nucleocapsid (N) proteins. Linear epitope mapping of the mAbs helped elucidate SARS-CoV-2 S and N interactions in lateral flow chromatography. A candidate rapid antigen test for SARS-CoV-2 N was validated using nasal swab specimens that were confirmed positive or negative by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Test results were image-captured using a mobile phone and normalized signal pixel intensities were calculated; signal intensities were inversely correlated to RT-PCR cycle threshold (Ct) value. CONCLUSION/SIGNIFICANCE: Overall, our results suggest that the rapid antigen test is optimized to detect SARS-CoV-2 N during the acute phase of COVID-19. The rapid antigen tests developed in this study are alternative tools for wide scale public health surveillance of COVID-19.


Subject(s)
COVID-19 , Metal Nanoparticles , Animals , Antibodies, Monoclonal , COVID-19/diagnosis , Gold , Mice , SARS-CoV-2 , Sensitivity and Specificity
3.
Viruses ; 14(3)2022 02 25.
Article in English | MEDLINE | ID: covidwho-1737035

ABSTRACT

Human transmission of SARS-CoV-2 and emergent variants of concern continue to occur globally, despite mass vaccination campaigns. Public health strategies to reduce virus spread should therefore rely, in part, on frequent screening with rapid, inexpensive, and sensitive tests. We evaluated two digitally integrated rapid tests and assessed their performance using stored nasal swab specimens collected from individuals with or without COVID-19. An isothermal amplification assay combined with a lateral flow test had a limit of detection of 10 RNA copies per reaction, and a positive percent agreement (PPA)/negative percent agreement (NPA) during the asymptomatic and symptomatic phases of 100%/100% and 95.83/100%, respectively. Comparatively, an antigen-based lateral flow test had a limit of detection of 30,000 copies and a PPA/NPA during the asymptomatic and symptomatic phases of 82.86%/98.68% and 91.67/100%, respectively. Both the isothermal amplification and antigen-based lateral flow tests had optimized detection of SARS-CoV-2 during the peak period of transmission; however, the antigen-based test had reduced sensitivity in clinical samples with qPCR Ct values greater than 29.8. Low-cost, high-throughput screening enabled by isothermal amplification or antigen-based techniques have value for outbreak control.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Immunologic Tests , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Front Trop Dis ; 2: 707865, 2021.
Article in English | MEDLINE | ID: covidwho-1547226

ABSTRACT

While molecular assays, such as reverse-transcription polymerase chain reaction (RT-PCR), have been widely used throughout the coronavirus disease 2019 (COVID-19) pandemic, the technique is costly and resource intensive. As a means to reduce costs and increase diagnostic efficiency, pooled testing using RT-PCR has been implemented. However, pooling samples for antigen testing has not been evaluated. Here, we propose a proof-of-concept pooling strategy for antigen testing that would significantly expand SARS-CoV-2 surveillance, especially for low-to-middle income countries, schools, and workplaces. Our laboratory-based testing demonstrates that combining of up to 20 nasal swab specimens per pool can expand surveillance with antigen tests, even if a pool contains only one positive sample.

SELECTION OF CITATIONS
SEARCH DETAIL